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ABSTRACT 
By combining artificial intelligent concepts with the human 
information processing model of Rasmussen, we have 
developed a conceptual framework for real-time AI 
systems which provides a foundation for system 
organization, control and validation. The approach is based 
on the description of system rocessing i terms of an 
abstraction hierarchy of states ofknowled e and processing 
functions which connect those states of Lowledge. The 
states of knowledge are organized along one dunension 
which corresponds to the extent to which the concepts are 
expressed in terms of the system inouts or in terms of the 
system response. Thus organized, the useful states form a 
ye ra l ly  triangular shape with the sensors and effectors 
orming the lower two vertices and the full evaluated set of 

courses of action the a x. If the representations and 
processin steps in the sKpes of this pyramid are correct 
and com fete, them the processin sequence from inputs to 
outputs following the slopes o?@s p y r e d  results in 
correct behavior. Unfortunate1 , thls ath is generally too 
computationally expensive to &rmed m real time, 
either by natural or artificially inteEgent systems. Within 
the boundaries of the triangle are numerous processing 
paths which shortcut the detaded processing, by connecting 
mcomplete levels of analysis to artially defmed responses. 
Shortcuts at different levels of agstraction include reflexes, 
sensory-motor control, rule-based behavior, and satisficing. 
The correcmess of shortcuts depends on whether the 
res me inferred on the processing shortcut is consistent 
wigthe responses which would have been inferred bv the 

computations which are being shortcut. By clarifying 
assumptions, relationships, and the knowledge and 
processing which is b e i g  approximated, this approach 
provides a foundation for knowledge acquisition, system 
design, and system validation. We have used this approach 
in the design of a real-time tactical decision aiding system, 
in defiiing the requirements for an intelligent aiding 
system for transport pilots, and in the design of an 
autonomous system. 

Figure 1 schematically describes the overall processing 
steps for a real-time intelligent agent such as a pilot, an 
autonomous system, or a real-time aiding system. The 
vertical, abstraction, axis in the figure corresponds to the 
extent to which the processing is removed from the 
concrete sensors and effectors. Movement along the 
horizontal axis represents progression of the processing 
from the sensors to the effectors. The ovals in the figure 
represent states of knowledge, and the labelled ;?res 
between those states represent processing which 
implements the indicated transitions between the states. of 
knowledge. Different knowledge representation 
requirements are associated with the different states of 
knowledge, and different computational requirements are 
associated with the different classes of transitions. The 

particular states of knowledge and processing steps should 
not be interpreted as required functional partitions for 
particular systems. The actual flow of processing in 
nontrivial s stems involves man more sta es than are 
shown, miresu l t s  will e n e r d  be usef by several 
rocessing levels to the rigkt of wiere they are produced. 

hany  more pathways ma exist between the indicated 
states of knowledge, and oKer states of knowled e may be 

summarized by the three classes of shortcuts listed within 
the three large arrows. 

important for some applications; these other pat a ways are 

1. PROCESSING WITHOUT 
SHORTCUTS 

The discussion in the next 21 paragraphs follows the 
information flow in Figure 1 from sensors to effectors, 
takin no shortcuts, and alternating between states of 
knowfedge and the processing steps which accomplish the 
transformations between those states. 

Sensors. The sensor state of knowledge is just the sensor 
data and other inputs to the intelligent agent. This input 
data includes "self' information from sensors such as 
kinesthetic sensors (e.g. actuator positions, velocities, 
stresses, and strains), system status data (e.g. self-test and 
built-in-test results), and internal environmental sensor data 
(e.g. temperatures, pressures, accelerations, flow rates, fuel 
rantity, vibration, and power supply voltages). This input 

ata also includes envuonmental information 
communicated from other agents. 

Perception. Perception is the mapping of the sensor data 
into symbolic descri tions of the entities and states of 
relevance to the in& ent agent. This signal-to-symbol 
processing includes o?all vision processmg u to and 
mcluding the level of scene description, and all $agnostic 
processing up to the level of system status. 

Enh'ry and Srute Descriptions. The ou ut of perce tual 
processin is a symbolic description opthe state o f the  
agent a n i  its environment. These descriptions could be 
represented in terms of instances of archetypical entities 
and states, with the attributes refined from the sensor data. 
The state descriptions include relationships between 
entities, when those relationships can be derived from the 
input data. 

Assessment. Assessment includes the processing stages in 
which the significance of the current situation is derived, in 
terms of the impact of the situation on the agent, its gods, 
plans, and actions. Assessment processing proceeds 
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Figure 1. General Information Processing Model W m  Shortcuts 
action for the intelligent agent. Option descriptions may 
include state and entity descriptions, situation descriptions, 
and goals. Thus the option representation language is a 
proper superset of the goal representation language. 

throush the eneration of successively more abstract 
descmtions ofthe situation attributes and of the situation 
as a whole. 

Situation Descriptions. Situation descriptions are a proper 
superset of entity and state descriptions. Because of the 
scog of.situation descriptions, it may no longer be feasible 
to scnbe situations in terms of single situation types. 
Thus situation descri tions may take the form of 
interrelated instances o f  different situation types, each of 
which describes some aspect of the total situation. 

Goal Identification. Goals Direct and focus behavior. 
Thus while goals ma enter at any level before this stage, 
they must be defmeJb the end of this stage, so that the 
oals can be used to J i v e  the option identification step. 

h e  very general static goals such as survival may be 
useful in strategic planning, more specific and more near- 
term situation-dependent goals are more effective in 
driving behavior. Goal identification proceeds from 
assessments of the situation and from more global goals 
contained in the plan structure. Since different aspects of 
the situation may dictate different goals, resolution of goal 
conflicts may be required. 

Goals. Goals combine descriptions of future states and 
situations and statements of the desirability of those states 
and situations. Thus the goal representation language is a 

rset of the situation representation language. %g:tg involve not only states, but also situations, 
actions, and the temporal and other relationships between 
states and situations, the re resentation for goals shares 
many of the characteristics o?plans. 

Option Identification. With descri tions of the state, 
situation, and goals, feasible behavior$ o tions can now be 
generated? For the overall processing to& optimal, in the 
sense that the overall behavior is the best for attaining the 
goals, th is  processing step must identify all options which 
may be optional; however not all options identlfied need be 

Options. Options are descriptions of potential courses of 

optimal. 

Option Evaluation. The option evaluation step is the 
detailed application of the goal criteria agamst the 
identified options. If the optmns are parametric, then 
evaluation can involve generating the members of the sets 
represented by the parametric options. This can in 
mciple produce any number of options to be evaluated. 

6nless the optimality criteria impose a total ordering on the 
courses of action, this set may not be finite. The 
technologies of heuristic search differential game theory, 
and operations research can each address option evaluation 
problems in different domains, but no efficient general 
methods for option evaluation are currently known. 

Evaluated 0 tions. Unless powerful abstractions, 
heuristics, ancfother means are available for representing 
and runing the space of options, usually onl a small set 
of tfe whole family of options can be evJuated. The 
evaluated option set may include all of the representations 
in the option representation, lus information, such as total 
or partial ordermgs, and eva!uative criteria, resulting from 
the evaluation of those options. In order that the behavior 
be optimal, a l l  attributes of evaluative interest must be 
c tured in the representation of the options. .Thus 

representation of options, and can only enlarge on the 
evaluated options representation by expansion of 
abstractions contained in the evaluated options, and only 
then when the evaluation of those options does not depend 
on the expanded detail. 

Alternative Selection. The alternative selection process 
may be trivial, if the goals im se a total orderin on the 
options, or it may involve invocation of afditional 
criteria to select amongst an equivalence class of best 
options. 

Course of Action. The course of action is a subset of the 
evaluated options. If the agent is operating in an uncertain 

su % sequent representations may be restrictions of this 
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environment involving unpredictable agents, or other 
sources of uncertainty, then the course of action may 
include branches to accommodate the generically different 
responses during plan execution. Thus the course of action, 
like the options, evaluated options, plans, and tasks, may be 
represented as a semilattice, with a root representing the 
current state, and nodes representing branches and joins of 
tasks and situations during possible plan executions. The 
course of action may still involve free parameters, or set- 
valued parameters, rf the values of those parameters was 
not required to evaluate the option. 

Planning. The planning process is the expansion of the 
course of action to the level of the operations to be 
performed. Note that many of the computational steps 
which would be considered as steps in l m i n g ,  such as 

performed to support option evaluation and the selection of 
the course of action. 

Plan. The plan representation may include entity and state 
representations, situation representations, decision criteria, 
and alternative options. From a representational standpoint 
it is thus e uivalent to the evaluated options representation. 
The plan ' h e r s  from that re resentation in two ways. 

"y to 
First, it is uniformly expandelto the level necess 
su port resource allocation processing; it thus must inc ude a 8  parallel operations, and detailed models . of t h k g .  
Secondly, the plan includes only those options which 
passed the alternative selection rocess. The Ian is thus 
more detailed than the course o?action, but incyudes fewer 
options than the evaluated options. 

Resource Allocation. Resource allocation binds specific 
resources to s cXic actions in the p!an. Some resource 
conflicts ma E v e  been resolved earlier in the processing 
to evaluate $e course of adtion and to develop the plan; the 
resource allocation process completes those allocations. 
Resource allocation processing completes the development 
of task descriptions to support plan execution. 

Tasks. The task re resentation is the plan re resentation 
expanded to the Eve1 of specific tasks 8 r  specific 
resources. Task descriptions include any parameters, other 
than inputs, required b the execution procedures. These 
task descriptions incluJ sensing tasks, and decision tasks, 
information processing tasks. It may also include enabling 
or initiating processing shortcuts such as servo control 
processes. 

Task Execution. Task execution follows the procedure for 
tasks of that type. This involves task initiation, 
performance momtoring, and arameter adjustment. Task 
execution can be influenced l y  the results from decision 
tasks, and by feedback from other running tasks. 

Control Commands. The ou ut of the task execution 
processing are control cornman% to the effectors and other 
resources. These control commands include all 
information other than input data necessary to determine 
the operation of those resources. The specific data depends 
on the resource controlled. 

Control. Control processing may involve servo-loops. or 
can operate with limited or no feedback. 

option identification and evaluation, may K ave already been 

Eflectors. Effectors include all resources under control of 
the agent, including information processing, actuators, and 
sensors. 

If all of the processes and representations described above 
are complete and correct, and they are to run completion, 
then no feedback is required for the system to produce 
correct behavior. However, efficiency can be improved by 

implementing feedback from later processihg stages to 
control processin at earlier stages. This cascading can 
take the form'o! the integration of later functions into 
earlier functions, where it can help narrow the number of 
options considered, or it can take the form of specific 
information fed back from later stages when those stages 
have examined partial results those earlier stages. An 
example of the processing of the f i i t  sort is the integration 
of resource allocation constraints into the option generation 
and evaluation stages; an example of the second sort is 
feedback from the alternative selection function about 
partially evaluated options. 

2. SHORTCUT PROCESSING 

Figure 1 shows three broad classes of shortcuts - those of 
analysis (intent formation), those of intent execution, and a 
class of "response" shortcuts which move at various levels 
of abstraction from left to right, bridgin from partial 
analyses to skeletal responses. We curreniy believe that 
res nse shortcuts are a redominant pathway in human 
i n G a t i o n  processin h e  response shortcuts range in 
abstraction from simpfe servo-control laws linkin sensors 
and effectors, up through satisficing [Simon, 196$l, which 
shortcuts explormg all of the courses of action. Shortcuts at 
an intermediate level of abstraction are particularly 
important in real-time decision making. Situation-response 
shortcuts, which move rightward from the vicinity of the 
situation description level of analysis to the vicinity of the 
tusks level of execution, are described in the companion 
paper A Situation-Response Model for Intelligent Pilot 
Aiding. 

Situation-response processing has a role in the less abstract 
skill-based behavior. The pathways in Figure 1 for skill- 
based shortcuts proceed nearly horizontally from the 
vicinity of sensing and perception to the vicinity of the 
effectors. The establishment of such skill-based shortcuts 
reduces workload and reduces processing delay by 
uncouplin the situation assessment process from the 
process otadapting to changing situational parameters. In 
our model, the activation and management of skill-based 
behavior is one of the normal functions of rule-based 
behavior. The situation assessment function then assumes 
the role of enabling the execution of the skill-based 
behavior. 

Both the risks and speed of such shortcut processin are 
well known. Interviews with airline pilots revealej the 
following example: During aircraft takeoff roll, the pilot- 
flying noticed a fluctuation in ri ht en h e  readings. Just 
before takeoff velocity the ilot %yin t eard  a loud boom 
md felt the plane vibrate. %efl&ive/$ he reached to shut 
down the right engine (havin mentally established its 
potential for failure). The pifot-not-flying stop d this 
move because he had determined that it was the l e r e n  ine 
that had failed. Thus, the processing shortcut (enablej by 
the assessment the situation as a possible-right-engi- 
problem) resulted in a rapid, but inappropriate response. 

Situation-response processing also has an important role in 
the more abstract knowledge-based behavior. The normal 
pattern is that when the limits of situation-response 
processing is reached, knowledge-based reasoning is 
mitiated. Then either the situation chan es while the 
knowledge-based processing takes place, or t8e knowledge- 
based processing produces a useful result. In either case 
the processing reverts to the situation-response model. 
Note that in this model situation-response processing serves 
as an input filter for knowledge-based processing, 
guaranteeing tllat the scarce knowledge-based processing 
resources are only invested in unusual and hence 
presumably fruitful problems. 
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3. CONCLUSIONS 

Real-time performance in natural or artificial1 intelligent 
systems depends on using the lowest feasibre levels of 
abstraction. Processes operating at different levels of 
abstraction can be organized so that correct behavior can be 
implemented using information processing shortcuts. The 
shortcut and other levels of processing can be organized so 
that less abstract processes develop abstractions for more 
abstract processmg, and more abstract rocessing 
supervises the less abstract. The development of shortcuts 
in the information rocessing abstraction hierarchy is a 
basic mechanism for%aming to perform more quickly. 
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